EF07 Heavy Ions: Highlights and Plans

Co-conveners: Yen-Jie Lee (MIT), Swagato Mukherjee (BNL)

Energy Frontier Workshop - Restart September 3, 2021

Workshops This Year

EIC Opportunities for Snowmass (25-29 January 2021)

https://indico.bnl.gov/event/9376/

Organizer: Abhay Deshpande, Ciprian Gal, Swagato Mukherjee, Yen-Jie Lee

OppOrtunities at the LHC (4-10 February 2021)

https://indico.cern.ch/event/975877/

Organizer: Jasmine Therese Brewer, Aleksas Mazeliauskas, Wilke van der Schee

Heavy Ions and New Physics (20-21 May 2021)

https://indico.cern.ch/event/831940/

Organizer: Marco Drewes, David d'Enterria Andrea, Giammanco, Jan Hajer

rtunities

at the LHC

EF07 Parallel Session

Heavy Ions and New Physics

- Second successful workshop on New Physics searches in heavy ion collisions
- Potential New Physics (more than presented in this talk)
 - Magnetic monopoles
 - Axion-like particles
 - Sexaquarks
 - Dark photons
 - Soft New Physics
 - Long-lived New Physics
- Connection to
 - Cosmic ray air showers
 - τ -lepton g-2
 - Gravitational waves

First workshop resulted in

contribution to 'European Strategy for Particle Physics' (ESPP)

New physics searches with heavy-ion collisions at the CERN Large Hadron Collider

```
Roderik Bruce<sup>1</sup>, David d'Enterria<sup>2,18</sup>, Albert de Roeck<sup>2</sup>, Marco Drewes<sup>3</sup>, Glennys R Farrar<sup>4</sup>, Andrea Giammanco<sup>3</sup>, Oliver Gould<sup>5</sup>, Jan Hajer<sup>3</sup>, Lucian Harland-Lang<sup>6</sup>, Jan Heisig<sup>3</sup>, John M Jowett<sup>1</sup>, Sonia Kabana<sup>7,16</sup>, Georgios K Krintiras<sup>3,17</sup>, Michael Korsmeier<sup>8,9,10</sup>, Michele Lucente<sup>3</sup>, Guilherme Milhano<sup>11,12</sup>, Swagata Mukherjee<sup>1</sup>, Jeremi Niedziela<sup>2</sup>, Vitalii A Okorokov<sup>14</sup>, Arttu Rajantie<sup>15</sup>, and Michaela Schaumann<sup>1</sup>
```

J. Phys. G 47 (2020) 6, 060501 e-print: 1812.07688 [hep-ph]

Jan Hajer

HI and NP: ALP Search

Ultra peripheral HI collisions

Magnetic field in 5.02 TeV PbPb

$$|B| \simeq 4 \cdot 10^{16} \, \mathrm{T} \simeq 7 \, \mathrm{GeV^2}$$

PbPb

Projection with LHCb

Expected to surpass current limits

for masses below 5 GeV

Light ALPs also accessible @ ALICE

Potential New Physics search without competition by CMS or ATLAS

Jan Hajer

 Performance with MoEDAL, LHCb, CMS, ATLAS and ALICE presented in this workshop

Yen-Jie Lee

HI and NP: Tau g-2

anomalous magnetic moment

$$a_{\tau}=(g_{\tau}-2)/2$$

Constraint from DELPHI

$$-0.052 < a_{\tau} < 0.013$$

poorly constrained due to short lifetime

Jan Hajer

Measure in HI $\begin{array}{ccc} Pb & Ze & Pb \\ & \end{array}$

- Rely on the large EM field in heavy ion collisions to produce tau leptons.
- Significant improvement on a_τ expected with 2-20 nb⁻¹ of PbPb

HI and NP: Sexaquark

S = uuddss

spin, colour, and flavour singlet

$$m_S \approx 2m_p$$
 $B = -2$

$$Q = 0$$
 $S = -2$

no pion interactions

Tightly bound and compact

 $r_S \approx 0.2 \, \mathrm{fm}$

Dark matter candidate

Quasi stable with $\, \Omega_{\rm DM}/\Omega_b \, pprox 5 \,$ without free parameters

So far not excluded

Despite searches for the *H*-dibaryon with same quark content

Because search relies on

- unstable particle
- heavy particle (> 2 GeV)
- interaction with Λ

However

S is similar to neutron

$$\{\pi:n:S\}pprox\{1:0.01:10^{-4}\}$$

- Sexaquark-to-baryon density ratio can be predicted by simple statistical arguments in the QGP-hadronization transition with known QCD parameters (quark masses and $T_{\rm QCD}$) to be $\approx 4.5\,\pm\,1$
- Reply on heavy ion collision to produce sexaquarks

Jan Hajer

Proposal

1500

1600

 10^{-16}

search in HI collisions behind a neutron absorber shield

1700

2000 2100

Theory (b = 0)

1900

1800

 m_S [MeV]

OppOrtunities at the LHC

- Workshop was a success
 - On average 186 unique participants per day over 5 days
 - Many new computations and projections
- 2. One crucial discussion point: the colliding energy
 - Maximum magnetic field: around 7 TeV
 - But perhaps no pp reference available? It is however difficult to lower the energy

June CERN council:

Potential OO pilot run → Special run

Full LHC exploitation

Jasmine Therese Brewer, Aleksas Mazeliauskas, Wilke van der Schee

Full LHC exploitation : Oxygen run and SND

Special O-O and p-O run

- Physics motivations: study of emergence of collective effects in small systems; measurements relevant for cosmic rays (extensive air shower modelling), etc.
- Experiments requested ~ nb⁻¹ for each of OO and pO.
 1 week (including commissioning), most likely in 2024
- No impediment from accelerators but radiological impact of high-intensity oxygen beam requires mitigation measures and additional beams stoppers to be able to access Booster when LEIR operates.
- Needed resources allocated in this MTP

Wilke van der Schee

pO & OO: Muon Puzzle in Cosmic Air Shower

Muon puzzle in cosmic air showers

- Cascade of energetic collisions, producing muons and photons
- Difficult to *simultaneously* predict
 - Number of muons
 - Depth of air shower (in air density units)

Wilke van der Schee

Yen-Jie Lee

- **Direction** from particle arrival times
- **Energy** from size of **fluorescence light**
- Mass from depth of shower maximum and size of μ component

Shower depth and Mass Difference Fe to p: 100 g cm-2 deeper

Number of muons and Mass Difference Fe to p: 40 % more muons

$$E_{\rm cal} = \int_0^\infty \left(\frac{dE}{dX}\right)_{\rm ionization} dX$$

Experimental accuracies

 $0.5 - 1.5^{\circ}_{stat}$ Direction

 $10 - 20 \%_{\text{stat}}$ Energy

15 – 25 gcm⁻² stat

14 %_{sys}

 $\mathbf{X}_{\mathsf{max}}$ 20 %_{stat} 10 $\%_{sys}$ of $\Delta(p,Fe)$ 25 $%_{svs}$ of $\Delta(p,Fe)$

pO & OO: Muon Puzzle in Cosmic Air Shower

Muon puzzle in cosmic air showers

- Cascade of energetic collisions, producing muons and photons
- Difficult to <u>simultaneously</u> predict
 - Number of muons
 - Depth of air shower (in air density units)

LHCf: this is were most of the energy is deposited (ends after run 3)

pO & OO: From pQCD to Thermal

- Strangeness enhancement from ALICE particle ratios measurement
- Effect increases with multiplicity, not described by PYTHIA. Not yet fully understood.
- OO: provide unique opportunity to smoothly connect pPb and PbPb

11

Wilke van der Schee

pO and OO: Jet Quenching in Small System?

- There seems to be flow
 - Quite some modeling, but everything consistent with hydro (does not prove hydro!)
- 2. But: nuclear modification > 1: no (naive) jet/hadron energy loss

12

Wilke van der Schee

"Anti-k_T" Jet in e⁺e⁻ collisions

Since the end of LEP operation, significant progress has been made in jet definition and jet algorithms:

- Jet substructure observables have been widely explored in pp and HI collisions
- Novel tools for jet flavor identification, EW boson & top tagging and studies of QGP
- However, those techniques are not yet used in e⁺ e⁻ annihilation data

Yi Chen

https://arxiv.org/abs/2108.04877

Example result: jet spectrum

Jet @ EIC

The EIC, a jet factory, will make the first jets in nuclear DIS and proton-polarized DIS

We will probe unexplored aspects of the theory of strong interactions that govern the "evolution" of the <u>3D structure</u> with energy

14

Example: New H1 measurement

New H1 measurement https://arxiv.org/abs/2108.12376

15

Miguel Arratia

Development of Jet Substructure Observables

Jet substructure, the key to novel TMD studies

Recent example:

"T-odd jets" (arXiv:2104.03328)

FIG. 1. Origin of the jet T-odd contributions. The WTA jet axis lies outside the plane by the spin S and P_{in} , to allow for the asymmetry due to the quantum correlation between parton's spin and its hadronization about the plane.

Grooming

Gutierrez et al. JHEP 08 (2019) 161 . Makris et al. JHEP 07 (2018) 167

Jet axes

Cal et al. JHEP 04 (2020) 211, Niell et al. JHEP04 (2017)020 Liu et al. arXiv: 2104.03328

Declustering?

arXiv:2103.16526

Heavy Flavor Physics @ EIC

A. Sadofyev, F. Olness, S. Moch, P. Wong, D. Shao, X. Li, Y. Makris, Y. Zhao, Z. Liu

 Density effects on parton propagation in e+A collisions and hadronization

 Charm jets as probes of strangeness at the EIC

Stephen Sekula

Heavy Flavor Physics Goal and EIC Detector

- Deciphering QCD nuclear PDFs and nCTEQ
- The Heavy Flavor Schemes at EIC
- A Forward Silicon Tracker for the Future Electron-ion Collider Experiments

Stephen Sekula

Heavy Favor Observables @ EIC

- Heavy Flavor dijets and the Sivers asymmetry
- Quarkonium production mechanisms at the EIC
- Measurements of heavy flavor mesons and hadronization

Stephen Sekula

Gluon Saturation @ EIC

The boosted proton

for the most recent review: A. Morreale, F. Salazar, Universe 7 (2021) 8, 312 • e-Print: 2108.08254

Bjoern Schenke

Observables

- Inclusive: Structure functions
- Semi-inclusive: dihadron, dijet correlations
- Diffractive processes: e.g. ratio of diffractive and total cross-section, vector meson production, ...

Using heavier ions helps with accessing the saturated regime

$$(Q_s^A)^2 \approx cQ_0^2 \left(\frac{A}{x}\right)^{1/3}$$

Reveal The Genuine Saturation Effect

Matching TMD and CGC frameworks at small-x

CGC, improved TMD, and TMD frameworks

Mäntysaari, Mueller, Salazar, Schenke. 1912.05586 Boussarie, Mäntysaari, Salazar, Schenke. 2106.11301

$$d\sigma_{\rm CGC} = d\sigma_{\rm TMD} + \mathcal{O}\left(\frac{k_{\perp}}{Q_{\perp}}\right) + \mathcal{O}\left(\frac{Q_s}{Q_{\perp}}\right)$$

 $P_{1,\perp}$ $2P_{\perp}$ k_{\perp} $p_{2,\perp}$ $Q_{\perp} \sim P_{\perp}, Q$

TMD valid $k_{\perp}, Q_{\rm s} \ll Q_{\perp}$

back-to-back hadrons/jets and transverse momenta larger than sat scale $\mathrm{d}\sigma_{\mathrm{ITMD}}$

see also: Dominguez, Marquet, Xiao, Yuan. 1101.0715, Altinoluk, Boussarie. 1902.07930, Boussarie, Mehtar-Tani. 2001.06449 Improved TMD valid $\,Q_{\scriptscriptstyle S} \ll Q_{\scriptscriptstyle \perp}\,$

transverse momenta larger than saturation scale

No need for back-to-back!

21

Bjoern Schenke

CGC vs. ITMD and TMD

Matching TMD and CGC frameworks at small-x

Kinematic and genuine saturation effects at the EIC

22

Boussarie, Mäntysaari, Salazar, Schenke. 2106.11301

CGC shows further suppression relative to (I)TMD in back-to-back limit

Anisotropies modified in ITMD and CGC

Bjoern Schenke

Summary and Plan

New Physics in HIC:

- ALP searches, monopole, tau g-2 and sexaquark
- Preparation for the Snowmass document

Physics with pO and OO collisions:

- Important data for cosmic ray physics
- Reveal jet quenching effect in small collision systems
- Jets in e⁺e⁻: reference to pp, EIC and HI data

• EIC Physics:

- Yellow report has become public
- New developments in the EIC detector design for jet and heavy flavor physics
- New developments on jet related observables
- Advance in revealing the genuine saturation effects and NLO computation on the gluon saturation observables
- Convert the collected inputs to Snowmass documents
- NP LRP timeline: to be decided by the end of the 2021

Backup slides

EIC

- EIC topic coordinators:
 - Heavy Flavor @ EIC: Xin Dong (LBL), Stephen Sekula (SMU), Ivan Vitev(LANL)
 - Proton tomograph @ EIC for HEP applications: Timothy Hobbs (SMU), Salvatore Fazio (BNL), Alexey Prokudin (PSU), Alessandro Vicini (Milan)
 - Gluon saturation @ EIC: Tuomas Lappi (Jyvaskyla), Soeren Schlichting (Bielefeld), Renaud Boussarie (BNL), Bjoern Schenke (BNL)
 - EW&BSM @ EIC: Yulia Furletova (JLAB), Ciprian Gal (SBU), Claire Gwenlan (Oxford)
 - Jets @ EIC: Miguel Arratia (UCR), Zhong-Bo Kang (UCLA), Stefan Prestel (Lund)

HIC

- HIC topic coordinators assigned
 - Search for New Physics with Heavy Ion Beam: Marco Drewes (Theory) and Andrea Giammanco (CMS).
 - Quarkonia and exotic hadron production in relativistic heavy ion collisions:
 Matthew Durham (LHCb) and Xiaojun Yao (Theory)
 - Ultra Peripheral Heavy Ion Collisions: Zhangbu Xu (STAR), Jian Zhou (Theory), Mariusz Przybycien (ATLAS/ZEUS)
 - High Density QCD in Small Collision Systems: Jaki Noronhahostler (Theory),
 Wei Li (CMS/STAR), Dennis Perepelitsa (ATLAS/sPHENIX)
 - Heavy Flavor Production in Heavy Ion Collisions: Gian Michelle Innocenti (ALICE), Jing Wang (CMS), Jin Huang (sPHENIX)
 - Jet and Jet Substructure in Heavy Ion Collisions: James Mulligan (ALICE), Leticia Cunqueiro Mendez (ALICE), Yi Chen (CMS), Anne Sickles (ATLAS)
 - EW Physics in Heavy Ion Collisions and the Impact to nuclear PDF: Hannu Paukkunen (Theory), Georgios Krintiras (CMS) and Emilien Champon (CMS)

Magnetic Monopole

Magnetic monopoles

Magnetic field in 5.02 TeV PbPb

$$|B| \simeq 4 \cdot 10^{16} \, \mathrm{T} \simeq 7 \, \mathrm{GeV^2}$$

Magnetic charges

$$abla \cdot E =
ho_E$$
 , $abla imes E = -\partial_t B - j_M$ $abla \cdot B =
ho_M$, $abla imes B = -\partial_t E - j_E$

Dirac quantisation

$$g \in g_D \mathbb{Z}$$
 with $g_D = 2\pi/e_0$

ATLAS 2019

Drell-Yan crosssection is wrong

$$e
ightarrow g = 2\pi/e$$
 Duality

Because $g_D \approx 20.7 \gg 1$

Process is non-perturbative

Instanton tunneling action

$$\Gamma \propto e^{-S_{\rm inst}}$$

Monopole Schwinger production

$$\Gamma=rac{g^2|B|^2}{8\pi^3}\expigg(rac{g^2}{4}-rac{\pi m^2}{g|B|}igg)$$

Needs strong magnetic field

Time dependence

enhanced production for rapid pulses

Spatial inhomogeneity

Effect not known

Solitonic monopole size

Enhances production

Jan Hajer

SnowMass2021

